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Hydrodynamic schooling of flapping swimmers
Alexander D. Becker1,*, Hassan Masoud1,*,w, Joel W. Newbolt1, Michael Shelley1 & Leif Ristroph1

Fish schools and bird flocks are fascinating examples of collective behaviours in which many

individuals generate and interact with complex flows. Motivated by animal groups on

the move, here we explore how the locomotion of many bodies emerges from their

flow-mediated interactions. Through experiments and simulations of arrays of flapping wings

that propel within a collective wake, we discover distinct modes characterized by the group

swimming speed and the spatial phase shift between trajectories of neighbouring wings. For

identical flapping motions, slow and fast modes coexist and correspond to constructive and

destructive wing–wake interactions. Simulations show that swimming in a group can enhance

speed and save power, and we capture the key phenomena in a mathematical model based on

memory or the storage and recollection of information in the flow field. These results also

show that fluid dynamic interactions alone are sufficient to generate coherent collective

locomotion, and thus might suggest new ways to characterize the role of flows in animal

groups.

DOI: 10.1038/ncomms9514 OPEN

1 Applied Math Lab, Courant Institute, New York University, 251 Mercer Street, New York, New York 10012, USA. * These authors contributed equally to this
work. w Present address: Department of Mechanical Engineering, University of Nevada, Reno, Reno, Nevada 89557, USA. Correspondence and requests for
materials should be addressed to L.R. (email: ristroph@cims.nyu.edu).

NATURE COMMUNICATIONS | 6:8514 | DOI: 10.1038/ncomms9514 | www.nature.com/naturecommunications 1

& 2015 Macmillan Publishers Limited. All rights reserved.

mailto:ristroph@cims.nyu.edu
http://www.nature.com/naturecommunications


W
hen collections of bodies move within a fluid, the
motion of each is influenced by the flows generated by
others, often with surprising and important

consequences. During sedimentation of particulate suspensions,
for example, many-body fluid-mediated interactions lead to
unusual particle trajectories as well as large-scale flows that
significantly affect the global settling time1. Similar interactions
are at work in many natural contexts and engineering
applications, from water droplets within clouds2 to beds of
sand or other granular matter suspended by flows3. These cases in
which bodies passively respond to external forcing are
complemented by systems in which the constituents actively
generate the flows through which they interact4–6. To date,
studies of such active suspensions or active matter have largely
focused on swimming micro-organisms, or micro-particles, that
produce flows through chemical reactions7–9. At such small
scales, viscosity dominates inertia, flow fields are established
nearly instantaneously, and thus interactions between bodies can
be thought of as immediate and depending only on the present
configuration and motions10.

For larger bodies and faster motions where fluid inertia is
important, flows decay slowly, and interactions can no longer be
viewed as instantaneous. The biological realm provides some of
the most fascinating examples in which individuals actively
generate inertial flows, such as schooling of fish and flocking
of birds. The collective behaviours are intriguing from many
perspectives11–14, including the conventional fluid dynamic view
that highly ordered animal groupings benefit from flow-mediated
interactions by saving on the energetic cost of movement15,16.
For example, V-formation flight of birds is thought to involve
favourable interactions with the up- and down-wash of upstream
neighbours16–18, and correlations in flapping motions and
inter-neighbour spacing in actual flocks have been interpreted
as behavioural responses that take advantage of these flows19,20.
For fish schools, a diamond-shaped lattice arrangement is
thought to enable individuals to extract energy from the
vortices shed by others15,21, although field and laboratory
studies have led to conflicting conclusions regarding a possible
hydrodynamic function of schooling22,23.

Inspired by animal groupings, here we seek to understand
how fluid-mediated interactions among self-propelling bodies
influence their collective locomotion. Specifically, we study such
interactions in the idealized setting of linear arrays of wings
undergoing prescribed flapping motions but whose swimming
speed is free or dynamically determined. Because the flows are
inertial or long-lived, the forcing experienced by each body
depends on the dynamical history of the ensemble, and the
system can be said to possess memory of past states. We aim to
understand how this effect is manifest in collective locomotion
and to draw parallels to other fluid-structure systems that display
memory24–26. Understanding these interactions could also
provide insight into the fluid dynamics of animal groups on the
move, especially with regard to possible exploitation of flows for
formation locomotion or highly ordered groupings. Moreover,
the underlying hydrodynamic principles might be put to use in
applications involving the interactions of bodies with unsteady
flows27–32. For example, schemes might be devised for harvesting
energy from waves or other time-dependent flows, and air or
water vehicles could be designed to take advantage of interactions
between propulsors.

Results
Experimental approach. Our experimental design is guided by
the goals of achieving self-propulsion for prescribed flapping
motions and realizing an effectively infinite array of bodies to

explore their interactions. As shown in Fig. 1a and detailed in the
Methods section, the device consists of one or more wings or
hydrofoils that are heaved up and down, and consequently swim
in orbits around a cylindrical water tank33–35. A video showing
the device in operation is available in Supplementary Movie 1.
Free swimming is achieved by mounting the wings to a vertical
axle via a low-friction rotary bearing. Thus, the forward
locomotion is not prescribed but is an outcome of the
interaction with the fluid. This self-propulsion condition as well
as the inertial or high Reynolds number flows are important
properties shared with bird flight and fish swimming. Our system,
however, involves fixed separations between bodies, whereas
inter-individual spacing is free or dynamically determined
in animal groups, and this difference will likely lead to
differences in the emergent locomotion.

Previous studies have shown that the dynamics and flows
observed in rotational systems compare well with those
in translational geometries33–36. To ensure the phenomena
we observe are not a peculiarity of geometry, we accompany
our three-dimensional (3D) rotational experiments with
computational simulations in two-dimensional (2D) trans-
lational domains, as discussed in detail below. Most
importantly, the rotational geometry induces each wing to swim
within the wakes of others, as indicated by the trajectories of
Fig. 1b, and this arrangement thus mimics the conditions in an
infinite array. The device also allows us to explore swimming
behaviour for varying strength of hydrodynamic interactions
between swimmers. Increasing the number of wings connected to
the assembly decreases the spacing between members in an array
and amplifies interactions. Further, increasing flapping frequency
or amplitude induces faster swimming and thus stronger flows to
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Figure 1 | Flapping wings swimming in rotational orbits mimic an infinite

array of locomotors. (a) A motor heaves a wing or wing pair up and down

at prescribed frequency f and peak-to-peak amplitude A, resulting in

swimming of rotational frequency F around a cylindrical water tank. (b) The

rotational geometry allows for interactions with the flows generated in

previous orbits.
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be encountered in subsequent orbits. The swimming dynamics
are characterized by measuring the rotational speed around the
tank, and use of a clear-walled tank allows for visualization of the
flow fields.

Dynamics of interacting wings. Previous studies have used
rotational systems to study the dynamics and hydrodynamics
relevant to an isolated wing33–35. This is achieved by relatively
slow swimming of widely spaced hydrofoils, in which case
interactions are weak and the swimming speed follows simple
dependencies on flapping frequency and amplitude. Here we aim
to induce strong interactions by considering fast swimming of a
wing pair, and indeed we observe markedly different dynamics.
To systematically characterize the locomotion, we vary both the
peak-to-peak amplitude A and flapping frequency f for the pair
and measure the resulting rotational frequency F around the tank.
For each A, we incrementally increase f, and this upward sweep is
followed by a downward sweep to low values. The data of Fig. 2a
show that faster flapping leads to faster swimming, although F(f)
does not always change continuously. For A¼ 10 cm, for example
(red curve), F increases smoothly until a critical frequency near
f¼ 1 Hz, at which F abruptly increases, in this case doubling its
speed. As f is increased further, F again increases continuously.
For decreasing f, F remains high before abruptly dropping near
f¼ 0.2 Hz. Thus, the measured dynamics display a hysteresis
loop, and different flapping amplitudes lead to other loops. This
hysteretic behaviour is associated with bistability of states: for
identical flapping kinematics, the array can take on one of two
‘gears’ corresponding to slow and fast swimming modes.

To organize these observations, we first note that the quantity
f/F represents the number of flapping strokes in one orbit of
the tank, and thus the number of strokes separating the two wings
is given by S¼ f/2F. Equivalently, this schooling number
S represents the separation distance between successive swimmers
measured in wavelengths of motion, and this quantity serves as a
general way to characterize arrays of synchronized swimmers.
Specifically, S encodes the spatial phase shift between successive
swimmers: whole integer values of S denote spatially in-phase
states in which neighbouring wings trace out the same path
through space, and half-integer values indicate out-of-phase
states. In Fig. 2b, we show how S depends on f for all the data of
Fig. 2a. At each amplitude, low f leads to slow swimming or large
S, which indicates weak interactions. Increasing f leads to
decreasing S followed by saturation near a whole integer value,
thus residing nearly in-phase for a broad range of frequencies.
Further increasing f induces an abrupt downward jump in

S. Conversely, when f is decreased, the system approaches half-
integer S (out-of-phase) before an abrupt upward jump.

Viewing all amplitude data sets together reveals preferred and
avoided ranges of S for strongly interacting wing arrays.
We quantify this observation in Fig. 2c, in which the histogram
of S mod 1 reveals the distribution of spatial phase shifts. Values
between 0.5 and 1 are almost entirely absent, and among
the prevalent phases, distinct peaks appear at values of 0, 0.25
and 0.5. Thus, these swimmers preferentially occupy spatial
phase relationships corresponding to purely in-phase, leading
by a quarter cycle, and purely out-of-phase. The appearance of
these particular phase relationships suggests that schooling in
this system involves bodies interacting coherently through their
wave-like flow fields.

Flow visualization. To shed light on the hydrodynamics of these
modes, we seed the fluid with particles and use high-speed video
and image analysis to extract the flow fields (Supplementary
Movies 2 and 3). First, we consider a single wing swimming at
relatively low amplitude and frequency, in which case interactions
are weak. Indeed, the flows produced are largely dissipated
between successive passes, and thus the wing swims into
quiescent fluid, as shown by the velocity vector field of Fig. 3a and
the schematic of Fig. 3b. The wing leaves behind a stream-wise
array of counter-rotating vortices that are staggered vertically.
This so-called reverse von Karman wake has been observed in
biological and physical experiments, and is a signature of thrust
production during flapping33–38. The vortices are separated by
strong up and down flows, which we highlight in Fig. 3a using a
colour map of the vertical component of velocity. Each upstroke
generates an upward flow (red) and each downstroke a downward
flow (blue), and thus the wake can be viewed as a wave in space
that reflects the trajectory of the wing.

To induce stronger interactions, we attach multiple wings to
the assembly but maintain the same flapping motion. Under these
conditions, the system exhibits a hysteresis loop associated with
the slow and fast swimming modes. Figure 3c and d show the
flow field for the slow mode, in which successive wings trace
out similar paths through space. Captured here during the
downstroke, a wing is seen to sink within the downward (blue)
flow generated by its predecessors. Subsequently, the upstroke
occurs within an upward (red) flow. This visualization reveals
that not only are successive wings spatially in-phase with
one another but also any given wing is also in-phase with the
existing flow structure into which it swims. Thus, this
constructive wing–wake interaction mode involves the repeated
reinforcement of existing flows. Conversely, the fast mode
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Figure 2 | Dynamics of interacting wings. (a) Swimming speed, as measured by the rotational frequency F, versus flapping frequency f. For each peak-to-

peak amplitude A, an upward sweep of f is followed by a downward sweep (as indicated by arrows), and the data form a hysteresis loop. (b) Schooling

number S, which represents the number of wavelengths separating successive wings. Each hysteresis loop is bounded by in-phase (integer value of S) and

out-of-phase states (half-integer S). (c) A polar histogram of S mod 1 shows peaks corresponding to preferred spatial phase relationships between

successive wings.
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involves antagonistic motions between each wing and the flow it
encounters. As shown in Fig. 3e,f, the downstroke of the
wing moves against the upward flow of its predecessor, and
the subsequent upstroke occurs within a downward flow.
This destructive mode thus involves the inversion of flow fields,
in which the passing of a wing replaces an existing upward flow
with a downward one, for example.

Simulations. To gain additional insights into the intrinsic
dynamics of swimmer arrays, we conduct computational fluid
dynamics simulations that solve for the flow field and locomotion
of a flapping body. Similar to the experiments, these simulations
involve free swimming of a wing, where the emergent speed
reflects hydrodynamic interactions (see Methods section as well
as Supplementary Movies 4 and 5). The swimming dynamics is
determined from the computed fluid forces, and an infinite array
of swimmers is replicated by having a single wing repeatedly
traverse a domain of length L with periodic boundary
conditions39. Unlike the experiments, the flow field is 2D and the
swimming motion is translational rather than rotational. Thus,
observations common to both experiments and simulations are
expected to be generic and not due to system dimensionality or
geometry. We systematically explore the dynamics through a
procedure similar to that of the experiments: Flapping frequency
is incrementally increased, with each step initialized with the final

data of the previous step and then allowed to reach a terminal
swimming speed. This upward sweep of frequency is then
followed by a downward sweep.

These simulations reveal a number of features in common
with the experiments, including the coexistence of different
locomotion states for identical flapping motions. Figure 4a shows
the complete characterization of the dynamics using S¼ f/F,
where F¼U/L is the traversal frequency. Here, the simulation
results depend only on flapping Reynolds number Ref, which
plays a role analogous to f in experiments (see Methods).
Dynamical signatures of strong interactions again include
bistability of states, a hysteresis loop, and avoided values of S,
suggesting that these are general features of locomotor arrays.
Similar to the experiments, these simulations display a downward
jump at whole integer S, but unlike the experiments the upward
jump seems to occur at a quarter rather than half integer, leading
to a wider band of avoided phases. Nonetheless, the flow fields at
these transition points reveal constructive and destructive
characters, respectively. For the slow mode near RefE60 and
SE2, the vorticity plot of Fig. 4c shows that the wing slaloms
between vortices, contributing vorticity of the same sign to each.
For the fast mode near RefE20 and SE1.25, Fig. 4d shows
that the wing intercepts and destroys each oncoming vortex
core. Interestingly, previous 2D experiments of flapping foils
in unsteady flows have also shown vortex slaloming and
interception modes40 (see Discussion section).

a c e
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Figure 3 | Flow visualization. (a,b) Flow field around a non-interacting wing of chord length 3 cm extracted using particle image velocimetry and rendered

in a schematic. The colour map indicates the vertical component of the velocity vector field, with red indicating upward and blue downward flows. The

upstroke produces an upward flow and the downstroke a downward flow. (c,d) Slow mode of interacting wings: the downstroke of a wing (red path) occurs

within the downward flow of its predecessor (blue path). (e,f) Fast mode: the downstroke occurs within the upward flow of its predecessor.
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Figure 4 | Simulations of interacting wings. (a–d) An infinite array of synchronized or temporally in-phase wings is simulated by a single airfoil driven to

flap up and down, and allowed to swim freely left to right across a periodic domain. (a) Schooling number S for increasing (blue) and decreasing (red)

flapping Reynolds number, Ref. A non-interacting wing (dashed curve) swims at a speed intermediate between the two schooling modes. (b) Input power

normalized by that of an isolated wing. (c) Computed vorticity field for the slow mode (blue circle in a): The wing slaloms between vortices. (d) Fast mode

(red circle in a): the wing intercepts each vortex core. (e,f) Schooling dynamics and power consumption for an array in which nearest neighbours flap

temporally out-of-phase with one another.
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Importantly, these simulations allow us to compare the
swimming speed and power input for interacting bodies versus
an isolated, non-interacting wing. The latter case is simulated in a
longer domain to ensure that terminal speed is reached in the
absence of self-interactions (see Methods section). To compare
speed, we plot as a dashed curve in Fig. 4a the computed S for an
isolated wing, which is found to lie between the curves for the
slow and fast modes. Thus, with respect to speed, hydrodynamic
interactions can be beneficial or detrimental. To compare
energetic cost, we use the computed vertical force and prescribed
vertical velocity to form the average input power at steady state,
and Fig. 4b shows the power investment in the presence of
interactions normalized relative to that of a non-interacting wing
at the same Ref. Surprisingly, both the slow and fast modes save
power for nearly all Ref, and the presence of interactions can lead
to savings of 450%. The slow mode always saves more than the
fast, and the fast mode displays a moderate energetic increase
relative to an isolated wing for a narrow range of Ref near the
upward transition point.

These simulations also allow us to explore how differences in
temporal phases between swimmers in an array affect their
dynamics and power consumed. We consider a linear array in
which each wing flaps out-of-phase in time with its nearest
neighbours (see Methods section for details). To compare these
results to the previous case of a temporally in-phase array, we use
a natural generalization of the schooling number based on the
total phase shift due to both the temporal phase jT and spatial
phase contributions: S¼jT/2pþ f/F. Temporally in-phase arrays
have jT¼ 0 and out-of-phase arrays have jT¼p, and for
all cases this definition preserves the property that integer values
of S represent spatially in-phase trajectories while half-integer
S indicate spatially out-of-phase trajectories. In Fig. 4e, we
characterize the locomotion of out-of-phase arrays using this
modified schooling number, and we find that all the salient
features of in-phase arrays are also present in this arrangement.
Interestingly, important differences between in-phase and out-of-
phase arrays arise in the power consumed, as seen by comparison
of Fig. 4b,f. In particular, the fast mode for out-of-phase arrays is
associated with higher power consumption, and indeed it is
typically higher than that of an isolated swimmer. The origin
for this difference is unclear but may be related to the more
erratic and intense flows observed for the case of temporally
out-of-phase arrays.

Mathematical model. Our experiments and simulations motivate
a minimal model that describes the collective dynamics of a linear
array of swimmers. As shown in Fig. 5a, an infinite array of
bodies flapping in synchrony and spaced by a distance L is
represented by a single body that repeatedly traverses a domain of
length L that is specified by periodic boundary conditions. In our
conception, the body’s horizontal speed is perturbed because it
encounters the wake produced in its previous pass through the
domain. The perturbation strength depends on the traversal
time t� t0, which is the time elapsed since the body was last at
the same location: X(t)¼X(t0)þ L. Models of this type take
the form of a delay differential equation for the swimming
speed _X ¼ U ¼ U0þDUðt� t0Þ. Here, U0 is the speed in the
absence of interactions—that is, the speed of a single, isolated
swimmer—and DU represents the perturbation due to wing–wake
interactions. The effect of memory is explicitly incorporated
through the time delay t0, which is not a constant but rather
depends on the dynamical history.

Here we consider a specific model of this type given by the
equation:

_X ¼ sf p� ee�ðt� t0Þ=tcos 2pf t� t0ð Þ½ �: ð1Þ

The first term describes how the speed of an isolated swimmer
increases with flapping frequency f, where s and p are parameters.
This power law dependence of speed on frequency is consistent
with our measurements for a single wing. The second
term represents the perturbation to the speed, where e is the
wing–wake interaction strength. Importantly, the perturbation
depends on the difference 2pf(t� t0) in the current phase in the
flapping cycle and the phase when last at the same location. One
might expect that the forcing is a periodic function of this phase
difference, and the cosine form, in particular, is found to yield
model solutions that closely correspond to the experimental data
(see below). Finally, the dissipation of flows, and thus weakening
of interactions for longer traversal times, is captured by the
exponential term with a decay timescale of t.

We then seek steady swimming solutions corresponding to
_X ¼ LF, where F¼ 1/(t� t0) is the frequency with which the body
crosses the domain. Putting these relationships in the above
dynamical equation and taking L¼ 1, we obtain a nonlinear
algebraic equation relating F and f:

F ¼ sf p� ee� 1=tFcos 2pf =Fð Þ: ð2Þ

To illustrate the structure of the solutions, which are solved
numerically, we display in Fig. 5b the schooling number S¼ f/F
for a model with order-one parameter values, as given in
the caption of Fig. 5. The solution curve S(f) displays a fold
that consists of upper and lower stable branches (solid curves)
connected by an unstable branch (dotted curve). The
non-interacting swimmer (dashed curve) serves as a point of
comparison.

At low f, the wing progresses slowly, S is large, and the solution
resembles the non-interacting case. The fold appears at higher
f and corresponds to the coexistence of a slow mode (SE1)
and a fast mode (SE0.5), and at yet higher f the slow mode
disappears. The speed of an isolated wing lies intermediate
between these modes, as found in simulations. The model thus
reproduces remarkably well the key observations from the
experiments and simulations, suggesting that relatively simple
interaction laws that include memory underlie the complex
hydrodynamics of swimmer arrays.
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Discussion
Collectively, these findings indicate that the intrinsic dynamical
states of locomotor arrays involve repeated and coherent
interactions between each flapping body and the oscillating flow
into which it swims. Physically, we interpret these modes as stable
equilibria, that is, conditions for which thrust and drag balance to
yield steady swimming and the system returns to its original
speed if perturbed. Although the associated flow fields are
spatially and temporally complex, experiments and simulations
reveal a slow mode associated with constructive wing–wake
interactions and a faster, destructive mode. These observations
motivate a dynamical model that incorporates a forcing that
depends on the relative phase between oscillations of the body
and the oncoming flow, and the strong correspondence with
experiments suggests that the fluid-mediated interaction laws
have a tractable mathematical form.

The success and simplicity of our model also suggests that our
findings are rather generic, and indeed previous studies of
flapping bodies in unsteady flows show behaviour reminiscent of
the interaction modes discussed here28,30,40–45. Of particular
relevance are the experiments of Gopalkrishnan et al.40, which
determine the conditions for which a flapping foil fixed within an
oncoming flow interacts constructively or destructively with the
unsteady drag wake of an upstream cylinder. Our experiments
show that analogous modes exist for self-propelled bodies, which
interact through thrust wakes and whose speed is not prescribed
but is dynamically selected. Additional novel aspects of our work
include the identification of such modes as stable equilibria of
locomotion and the discovery of coexistence of modes for
identical driving conditions.

Many topics remain for future studies, including an explana-
tion of the differences between our 3D experiments and 2D
simulations in the fine structure of the hysteretic dynamics.
Further, while our simulations show that temporal variations in
swimming speed are typically o10%, future studies involving
bodies of lower density relative to the fluid will assess how
stronger fluctuations affect the dynamics. It will also be of interest
to observe the modes assumed by arrays in which the inter-wing
spacing is not fixed but is dynamically selected. We also aim to
better understand how the power consumed is linked to the
locomotion modes, a topic not addressed by the experimental
measurements and mathematical modelling presented here.
Ultimately, a long-term goal of this line of research is a derivation
of schooling interaction laws directly from the relevant
hydrodynamics.

Because the intrinsic modes of interaction represent collective
locomotion in the absence of active behavioural response, they
provide a purely physical system to which highly ordered animal
groups can be compared. Previous studies of schools have not
included all of the measurements necessary to determine spatial
phase; however, when swimming in the wake of a fixed cylinder,
fish adopt flapping motions that are spatially in-phase with the
oscillating flow46,47. In the language introduced here, this
behaviour corresponds to integer values of the schooling
number, S mod 1¼ 0. For formation flight of birds, recent
measurements show that individuals are either out-of-phase
(S mod 1¼ 0.5) or one quarter phase (S mod 1¼ 0.25) with
respect to the flow produced by an upstream neighbour20. In
light of our results, we interpret these particular locomotor-flow
phase relationships as suggesting that coherent fluid-mediated
interactions play a role in determining group structure.
For formation flight or swimming of animals, perhaps the
emergent structure represents a stable configuration in which not
only speed but also inter-individual spacing are dynamically
determined45. Future work might explore this idea by measuring
the temporal flapping phase, spacing and swimming speed—and

thus schooling number S—in laboratory realizations of fish
schools48. A narrow distribution of S across individuals would
serve as evidence for coherent fluid-mediated interactions.

It is also interesting to speculate how the coexistence of, and
transitions between, locomotion states might impact animal
collectives. Proximity to a transition point would facilitate
abrupt changes in the dynamics of the entire group49, which
could play a role in the rapid and seemingly coordinated response
of a school to a predator, for example. On the other hand,
aggregates may be susceptible to ‘phase separation’ or division
into slow and fast subgroups, leading to a loss of group cohesion
due to fracture or collisions.

Viewing schooling as the interaction of locomoting bodies
through a fluid, our results highlight the critical importance of
memory or history dependence. That is, the past state of the
system is encoded in the flow field, and the present state is driven
according to this stored information. This effect is explicitly
included in our model as the time-delayed interaction term and
manifested in the hysteretic dynamics. In contrast, history
dependence is not relevant to the swarming of micro-organisms
and active micro-particles, where the low Reynolds number and
absence of inertia ensure effectively instantaneous interactions4–7.
This effect is also not included in current statistical mechanical
models of animal collectives, which instead specify interaction
rules that depend only on the current state and act
instantaneously50–53. Incorporating memory into such models
could allow the field of active matter to be extended to systems in
which inertia is important. We also note that memory effects can
be important even for the case of a single locomoting
body33,36,43,54,55. For flapping flight, for example, this might
take the form of interactions between a wing with the vortices
generated during previous strokes54.

Finally, we note that some elements of the schooling problem
considered here may be shared with other systems that involve
the close interaction of a body with a wave it produces. For
example, intriguing parallels can be drawn to a recently studied
model system that consists of fluid droplets bouncing on a
vertically vibrating bath24. Vibration maintains an air layer
between the drop and surface, and prevents coalescence, and the
bouncing motion induces waves on the bath through which
droplets can influence one another. Interaction effects include
orbital motions of a pair, and memory is manifested even by a
single droplet that, under appropriate conditions, can coherently
interact with its own self-generated wave to induce ‘walking’ or
horizontal motion24–26. The dynamical description of this
problem shares salient features with our mathematical model,
including memory-dependent forcing and coherent body–wave
interactions26. In-phase schooling states in our rotational
experiments are also reminiscent of the Bohr model of the
atom, which associates electron orbits around the nucleus with
standing wave modes. Indeed, as in the pilot-wave interpretation
of quantum mechanical systems56, a self-interacting swimmer can
be viewed as having particle (wing) and wave (wake) identities
whose mutual influence leads to coherent states of motion.

Methods
Experiments. Experiments use 3D-printed plastic airfoils (NACA0017) of chord
length c¼ 6 cm and span 15 cm. Wings are centred at a distance of 26 cm from the
driving axle, and the tank measures 46 cm in radius and height. Similar to bird flight
and fish swimming, the wings experience high flapping Reynolds numbers,
Ref¼rfAc/mB102� 104, and typical parameters include frequency fB0.1� 5 Hz
and peak-to-peak amplitude AB1� 10 cm. Water density and viscosity are
r¼ 1 g cm� 3 and m¼ 10� 2 g cm� 1 s-1. Rotational speed around the tank is mea-
sured using an optoelectronic encoder. Flow visualization is carried out in a smaller
system: wings of chord c¼ 3 cm are held at a distance 8.5 cm in a clear tank of radius
and height 15 cm. To visualize the flow fields, we seed the water with micro-particles,
illuminate a cross-section of the tank with a laser sheet, capture high-speed video of
the particle motion and apply a particle image velocimetry algorithm57.
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Simulations. The simulations use a Fourier spectral method with volume pena-
lization58,59 to solve the 2D Navier–Stokes equations for a fluid of density r and
viscosity m. A NACA0010 airfoil of chord c and density 10 r is given a prescribed
vertical motion of (A/2) cos 2pft, with peak-to-peak amplitude A¼ 2c. The
integrated fluid forces and Newton’s second law determine the horizontal dynamics
of the wing. The horizontal dimension has periodic boundary conditions, and the
vertical dimension has height 3.5c and is bounded by walls. With these
specifications, the results depend only on the flapping Reynolds number
Ref¼rfAc/mB10� 102. The flow equations are solved in the frame of the wing on
a 256� 256 grid with time step 2� 10� 6. Simulations of a temporally in-phase
array involve a single wing traversing a domain of length L¼ 6c. The temporally
out-of-phase case is carried out by simulating a wing pair each in a domain of
length L¼ 4c, with periodic boundary conditions being applied over the total
length of 8c. Swimming of an isolated foil is simulated using a domain of length 24c
with uniform velocity enforced at the inlet and outlet. The schooling number for an
isolated wing (dashed curves in Fig. 4a,e) is defined to be S¼jT/2pþ fL/U, where
jT is the temporal phase (0 for in-phase, p for out-of-phase), U is the terminal
speed and L is the inter-wing spacing or domain length used in each case.
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